Demonstration of GALG tool

Presented for ANPA 2020 Tues Sept 15, 2020 Quantum Doug Matzke doug@quantumdoug.com www.quantumdoug.com www.DeepRealityBook.com

Installing GALG Tool

Download and install the 64bit version of python 2.7.18:

https://www.python.org/downloads/release/python-2718/

Download and unzip my GALG tool from this link:

http://www.matzkefamily.net/doug/GALG/GALG_2020_09_15.zip

Run the self test using command prompt tool:

Command Prompt
C:\Family\doug\GALG\GALG_2020_09_15>python testga.py
Ran 12 tests in 0.456s OK
C:\Family\doug\GALG\GALG_2020_09_15>_

Vectors & Multivectors using REP loop

Command Prompt - python -i ga.py

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i ga.py
>>> a
+ a
>>> b
 - b
>>> c
>>> a^b
 ⊦(a^b)
>>> b^a
 (a^b)
>>> (1+a)(1+b)
+ 1 + a + b + (a^b)
>>> (1+a)(1+b)(1+c)(1+d)
+ 1 + a + b + c + d + (a^b) + (a^c) + (a^d) + (b^c) + (b^d) + (c^d) + (a^b^c) + (a^b^d) + (a^c^d) + (b^c^d) + (a^b^c^d)
>>> gastates((1+a)(1+b)(1+c)(1+d))
(table for + 1 + a + b + c + d + (a^b) + (a^c) + (a^d) + (b^c) + (b^d) + (c^d) + (a^b^c) + (a^b^d) + (a^c^d) + (b^c^d) + (a^b^c^d)
INPUTS: a b c d | OUTPUT
ROW 00: - - - | 0
ROW 01: - - - + | 0
ROW 02: - - + - | 0
ROW 03: - - + + | 0
ROW 04: - + - - | 0
ROW 05: - + - + | 0
ROW 06: - + + - | 0
ROW 07: - + + + | 0
ROW 08: + - - - 0
ROW 09: + - - + | 0
ROW 10: + - + - | 0
ROW 11: + - + + | 0
ROW 12: + + - - | 0
ROW 13: + + - + 0
ROW 14: + + + - | 0
ROW 15: + + + + | +
Counts for outputs of ZERO=15, PLUS=1, MINUS=0 for TOTAL=16 rows
>>>
```

Rock, Paper, Scissor, Lizard, Spock

Command Prompt

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i rock paper scissors.py
+ (p1p^p2r) - (p1p^p2s) - (p1r^p2p) + (p1r^p2s) + (p1s^p2p) - (p1s^p2r)
play_rps(r/p/s, r/p/s)
>>> play_rps('r', 'r')
'Tie'
>>> play_rps('r', 's')
'Plaver1'
>>> play_rps('r', 'p')
'Player2'
>>> ^Z
C:\Family\doug\GALG\GALG_2020_09_15>python -i rock_paper_scissors_lizard_spock.py
 (p1k^p2p) + (p1k^p2r) + (p1k^p2s) - (p1k^p2z) + (p1p^p2k) + (p1p^p2r) - (p1p^p2s) - (p1p^p2z) - (p1r^p2k)
1s^{2} + (p1s^{2}p) - (p1s^{2}r) + (p1s^{2}p2r) + (p1z^{2}p2k) + (p1z^{2}p2p) - (p1z^{2}p2r) - (p1z^{2}p2s)
play rpszk(r/p/s/z/k, r/p/s/z/k)
>>> play rpszk('r', 'p')
'Player2'
>>> play_rpszk('z', 'z')
'Tie'
>>> play_rpszk('z', 'r')
'Plaver2'
>>> play_rpszk('z', 'p')
'Player1'
>>> play_rpszk('z', 's')
'Player2'
>>> ^Z
```

Qubits using GALG

⇔

Command Prompt - python -i qubits.py C:\Family\doug\GALG\GALG_2020_09_15>python -i qubits.py >>> A t+ a0 - a1 >>> B + b0 - b1 >>> A*B + (a0^b0) - (a0^b1) - (a1^b0) + (a1^b1) >>> gastates(A) INPUTS: a0 a1 | OUTPUT ROW 00: - - 0 ROW 01: - + | + ROW 02: + - | -ROW 03: + + | 0 Counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows >>> gastates(A*B) INPUTS: a0 a1 b0 b1 | OUTPUT ROW 00: - - - | 0 ROW 01: - - - + | 0 ROW 02: - - + - 0 ROW 03: - - + + | 0 _ _ _ _ _ _ _ ROW 04: - + - -0 ROW 05: - + - + | + ROW 06: - + + -ROW 07: - + + + | 0 ROW 08: + - - - | 0 ROW 09: + - - + | -ROW 10: + - + -+ ROW 11: + - + + | 0 ROW 12: + + - -0 ROW 13: + + - + 0 ROW 14: + + + - 0 ROW 15: + + + + | 0 Counts for outputs of ZERO=12, PLUS=2, MINUS=2 for TOTAL=16 rows >>>

Spinors and Qubits

Command Prompt - python -i qubits.py

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i qubits.py
>>> gastates(Sa)
INPUTS: a0 a1 | OUTPUT
ROW 00: - - +
ROW 01: - + | -
ROW 02: + - | -
ROW 03: + + | +
Counts for outputs of ZERO=0, PLUS=2, MINUS=2 for TOTAL=4 rows
>>> Sa**2
-1
>>> Sa**4
>>> gastates(A*Sa)
INPUTS: a0 a1 | OUTPUT
ROW 00: - - | +
ROW 01: - + 0
ROW 02: + - | 0
ROW 03: + + | -
Counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows
>>> gastates(A*Sa*Sa)
INPUTS: a0 a1 | OUTPUT
ROW 00: - - | 0
ROW 01: - + | -
ROW 02: + - | +
ROW 03: + + | 0
Counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows
>>>
```

Roots of Unity

 $X^{2} = -1$ (*i*) and $X^{2} = +1$ (neutrino)

>>> gasolve([a0, a1], lambda x: x**2, -1) Found match at 12 where X=+ a0 + a1 produces -1 for both Found match at 15 where X=- a0 + a1 produces -1 for both Found match at 21 where X=+ a0 - a1 produces -1 for both Found match at 24 where X=- a0 - a1 produces -1 for both Found match at 27 where X=+ (a0^a1) produces -1 for both Found match at 54 where X=- (a0^a1) produces -1 for both Attempted 81 with 6 found. <gasolve for [+ a0, + a1] tried=81 found=6> >>> gasolve([a0, a1], lambda x: x**2, 1) Found match at 1 where X=1 produces 1 for both Found match at 2 where X=-1 produces 1 for both Found match at 3 where X=+ a0 produces 1 for both Found match at 6 where X=- a0 produces 1 for both Found match at 9 where X=+ a1 produces 1 for both Found match at 18 where X=- a1 produces 1 for both Found match at 39 where X=+ a0 + a1 + (a0^a1) produces 1 Found match at 42 where X=- a0 + a1 + (a0^a1) produces 1 Found match at 48 where X=+ a0 - a1 + (a0^a1) produces 1 Found match at 51 where X=- a0 - a1 + (a0^a1) produces 1 Found match at 66 where X=+ a0 + a1 - (a0^a1) produces 1 Found match at 69 where X=- a0 + a1 - (a0^a1) produces 1 Found match at 75 where X=+ a0 - a1 - (a0^a1) produces 1 Found match at 78 where X=- a0 - a1 - (a0^a1) produces 1 Attempted 81 with 14 found. <gasolve for [+ a0, + a1] tried=81 found=14>

$\mathbf{X}^2 = -\mathbf{X}$

>>> gasolve([a0, a1], lambda x: x**2, lambda x: -x)
Found match at 0 where X=0 produces 0 for both
Found match at 2 where X=-1 produces 1 for both
Found match at 4 where X=+ 1 + a0 produces - 1 - a0 for both
Found match at 7 where X=+ 1 - a0 produces - 1 + a0 for both
Found match at 10 where X=+ 1 + a1 produces - 1 - a1 for both
Found match at 19 where X=+ 1 - a1 produces - 1 + a1 for both
Found match at 40 where X=+ 1 + a0 + a1 + (a0^a1) produces - 1 - a0 - a1 - (a0^a1)

$X^{3} = +1$ (trine) and $X^{4} = +1$ (sqrt not)

>>> gasolve([a0, a1], lambda x: x**3, 1) Found match at 1 where X=1 produces 1 for both Found match at 31 where $X=+1+a0+(a0^{-}a1)$ produces 1 for both Found match at 34 where X=+ 1 - a0 + (a0^a1) produces 1 for both Found match at 37 where $X=+1+a1+(a0^a1)$ produces 1 for both Found match at 46 where X=+ 1 - a1 + (a0^a1) produces 1 for both Found match at 58 where X=+ 1 + a0 - (a0^a1) produces 1 for both Found match at 61 where X=+ 1 - a0 - (a0^a1) produces 1 for both Found match at 64 where X=+ 1 + a1 - (a0^a1) produces 1 for both Found match at 73 where X=+ 1 - a1 - (a0^a1) produces 1 for both Attempted 81 with 9 found. <gasolve for [+ a0, + a1] tried=81 found=9> >>> gasolve([a0, a1], lambda x: x**4, 1) Found match at 1 where X=1 produces 1 for both Found match at 2 where X=-1 produces 1 for both Found match at 3 where X=+ a0 produces 1 for both Found match at 6 where X=- a0 produces 1 for both Found match at 9 where X=+ a1 produces 1 for both Found match at 12 where X=+ a0 + a1 produces 1 for both Found match at 15 where X=- a0 + a1 produces 1 for both Found match at 18 where X=- a1 produces 1 for both Found match at 21 where X=+ a0 - a1 produces 1 for both Found match at 24 where X=- a0 - a1 produces 1 for both Found match at 27 where X=+ (a0^a1) produces 1 for both Found match at 39 where $X=+a0 + a1 + (a0^a1)$ produces 1 for both Found match at 42 where X=- a0 + a1 + (a0^a1) produces 1 for both Found match at 48 where X=+ a0 - a1 + (a0^a1) produces 1 for both Found match at 51 where X=- a0 - a1 + (a0^a1) produces 1 for both Found match at 54 where X=- (a0^a1) produces 1 for both Found match at 66 where X=+ a0 + a1 - (a0^a1) produces 1 for both Found match at 69 where $X=-a0 + a1 - (a0^a1)$ produces 1 for both Found match at 75 where X=+ a0 - a1 - (a0^a1) produces 1 for both Found match at 78 where X=- a0 - a1 - (a0^a1) produces 1 for both Attempted 81 with 20 found. <gasolve for [+ a0, + a1] tried=81 found=20>

	C:\Family\doug\GALG\GALG_2020_09_15>python -i qubits.py
Nilpotents,	>>> gasolve([a0, a1], lambda x: x**2, 0) Found match at 0 where X=0 produces 0 for both
	Found match at 30 where X=+ a0 + (a0^a1) produces 0 for both
Unitary and	Found match at 33 where X=- a0 + (a0^a1) produces 0 for both
Officary and	Found match at 36 where $X=+$ a1 + (a0^a1) produces 0 for both
	Found match at 45 where X=- a1 + (a0^a1) produces 0 for both Found match at 57 where X=+ a0 - (a0^a1) produces 0 for both
Idempotents	Found match at 60 where X=- a0 - (a0^a1) produces 0 for both
•	Found match at 63 where X=+ a1 - (a0^a1) produces 0 for both
	Found match at 72 where X=- a1 - (a0^a1) produces 0 for both Attempted 81 with 9 found.
	<pre><gasolve +="" [+="" a0,="" a1]="" for="" found="9" tried="81"></gasolve></pre>
	>>> gasolve([a0, a1], lambda x: x**2, 1)
	Found match at 1 where X=1 produces 1 for both
	Found match at 2 where X=-1 produces 1 for both Found match at 3 where X=+ a0 produces 1 for both
	Found match at 6 where X=- a0 produces 1 for both
	Found match at 9 where X=+ a1 produces 1 for both
	Found match at 18 where X=- a1 produces 1 for both
	Found match at 39 where X=+ a0 + a1 + (a0^a1) produces 1 for both Found match at 42 where X=- a0 + a1 + (a0^a1) produces 1 for both
	Found match at 48 where X=+ a0 - a1 + (a0 a1) produces 1 for both
	Found match at 51 where X=- a0 - a1 + (a0^a1) produces 1 for both
	Found match at 66 where $X=+a0 + a1 - (a0^a1)$ produces 1 for both
	Found match at 69 where X=- a0 + a1 - (a0^a1) produces 1 for both Found match at 75 where X=+ a0 - a1 - (a0^a1) produces 1 for both
	Found match at 78 where X=- a0 - a1 - (a0 a1) produces 1 for both
	Attempted 81 with 14 found.
$\mathbf{\nabla}_{\mathbf{v}} \mathbf{v} \mathbf{v}^{2} = \mathbf{v} \left(\mathbf{v} \mathbf{v}$	<pre><gasolve +="" [+="" a0,="" a1]="" for="" found="14" tried="81"></gasolve></pre>
For $\mathbf{X}^2 = \mathbf{X}$ (Idempotent)	>>> gasolve([a0, a1], lambda x: x**2, lambda x: x) Found match at 0 where X=0 produces 0 for both
and $\mathbf{U}^2 = 1$ (Unitary)	Found match at 1 where X=1 produces 1 for both
	Found match at 5 where X=- 1 + a0 produces - 1 + a0 for both
	Found match at 8 where X=- 1 - a0 produces - 1 - a0 for both
then X = –1 ± U	Found match at 11 where X=- 1 + a1 produces - 1 + a1 for both Found match at 20 where X=- 1 - a1 produces - 1 - a1 for both
	Found match at 41 where $X=-1 + a0 + a1 + (a0^{a1})$ produces $-1 + a0 + a1 + (a0^{a1})$ for both
proof	Found match at 44 where X=- 1 - a0 + a1 + (a0^a1) produces - 1 - a0 + a1 + (a0^a1) for both
$X^{2} = (-1 \pm U)^{2} = X$	Found match at 50 where $X=-1 + a0 - a1 + (a0^a1)$ produces $-1 + a0 - a1 + (a0^a1)$ for both Found match at 53 where $X=-1 - a0 - a1 + (a0^a1)$ produces $-1 - a0 - a1 + (a0^a1)$ for both
(== •)	Found match at 68 where $X=-1 + a0 + a1 + (a0 a1)$ produces $-1 + a0 + a1 + (a0 a1)$ for both
	Found match at 71 where X=- 1 - a0 + a1 - (a0^a1) produces - 1 - a0 + a1 - (a0^a1) for both
	Found match at 77 where $X=-1 + a\theta - a1 - (a\theta^a 1)$ produces $-1 + a\theta - a1 - (a\theta^a 1)$ for both
	Found match at 80 where X=- 1 - a0 - a1 - (a0^a1) produces - 1 - a0 - a1 - (a0^a1) for both Attempted 81 with 14 found.
	<pre><gasolve +="" [+="" a0,="" a1]="" for="" found="14" tried="81"></gasolve></pre>

Qubit Summary G₂

Table 7.2: Operator Summary for 41 out of 81 states for Q_1

		Equation combinations X by Cartesian Distance	Cart Dist	Eqn Label	-X	(X)-1	X^2	\sqrt{X}	Comp Basis Vect
Another 40 are additive inverses of these 40 and have	bit-vector spinor	0 - 1 - a0 - a1 - a0 a1	0 1 1 1 1	0000 000- 00-0 0-00 -000	0000 000+ 00+0 0+00 +000	none X X X -X	0 +1 +1 +1 -1	Found 8 Found 6 none none ±00±	$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ [- & - & - & -] \\ [+ & + & - & -] \\ [+ & - & + & -] \\ [- & + & + & -] \end{bmatrix} $
the same properties	idempotent	$-1 - a0 = I^+$ + 1 - a0 = I^- - 1 - a1 = I^+	Cart	00 00-+ 0-0- 0-0+	00++ 00+- 0+0+ 0+0-	none none none	+x -x +x	±X none ±X none	$\begin{bmatrix} 0 & 0 & + & + \end{bmatrix} \\ \begin{bmatrix} - & - & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & + & 0 & + \end{bmatrix}$
	qubit	+ 1 - a1 = I^- - a0 - a1 + a0 - a1 - 1 - a0 a1 = I^+	Dist from 0 is	0-0+ 00 0-+0 -00-	0+0- 0++0 0+-0 +00+	<mark>none</mark> -X -X -00+	-1 -1 -000	0∓±± 0±±± none	$\begin{bmatrix} - & 0 & - & 0 \end{bmatrix} \\ \begin{bmatrix} - & 0 & 0 & + \end{bmatrix} \\ \begin{bmatrix} 0 & + & - & 0 \end{bmatrix} \\ \begin{bmatrix} + & 0 & 0 & + \end{bmatrix}$
	Pauli spin	+ 1 - a0 a1 = I^- - a0 - a0 a1 = I^- + a0 - a0 a1 + a0 - a0 a1	√2	-00+ -0-0 -0+0	+00- +0+0 +0-0	-00- none none	+000	none none none	$\begin{bmatrix} 0 & - & - & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & - & 0 & + \end{bmatrix} \\ \begin{bmatrix} + & 0 & - & 0 \end{bmatrix}$
	boson	- al - a0 al + al - a0 al - 1 - a0 - al		00 -+00	++00 +-00	none none 0+	0 0 00	none none none	$\begin{bmatrix} 0 & 0 & - & + \\ [+ & - & 0 & 0 \end{bmatrix}$ $[+ & - & 0]$
	qubit ± 1	+ 1 - a0 - a1 - 1 + a0 - a1 + 1 + a0 - a1	Cart	0+ 0-+- 0-++	0++- 0+-+ 0+	0 0-++ 0-+-	0++0 0-+0 0+-0	none none none	$\begin{bmatrix} 0 + + - \\ - 0 + - \end{bmatrix}$ $\begin{bmatrix} + - 0 + \end{bmatrix}$
neutrinc	antineutrino/	- a0 - a1 - a0 a1 + a0 - a1 - a0 a1 - a0 + a1 - a0 a1 + a0 + a1 - a0 a1	Dist from 0 is	0 +0 -+-0 -++0	+++0 ++-0 +-+0 +0	X X X X	+1 +1 +1 +1	none none none none	[+ + + 0] [0 -] [- 0] [0 + + +]
trine	and boson -1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	√3	-0 -0++ -0++ 0- 0+ +0- -+0+	+0++ +0+- +0-+ +0 ++0+ ++0+ ++0- +-0+ +-0-	+0+- +0++ +0 +0-+ ++0- ++0+ +-0- +-0+	-0-+ +0++ -0++ +0-+ 0+ ++0+ ++0+ +-0+	none $\pm 0\pm \pm$ none $\pm 0\mp \pm$ none $\pm\pm 0\pm$ none $\pm\mp 0\pm$	$\begin{bmatrix} - & + & - & 0 \\ [+ & 0 & + & -] \\ [0 & - & + & -] \\ [- & + & 0 & +] \\ [- & - & + & 0] \\ [+ & + & 0 & -] \\ [0 & + & - & -] \\ [- & 0 & + & +] \end{bmatrix}$
	neutrino ±1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cart Dist from 0 is $\sqrt{4}$	 ++ -+ -+++ -+++ -+++	+++++ +++ +++ +-+++ +++ ++ ++	none none none none none none none	+X -X +X +X +X +X +X +X -X	±X none ±X none ±X none ±X none	$\begin{bmatrix} 0 & 0 & 0 & - \\ - & - & + \\ + & - & + \\ 0 & 0 & + & 0 \\ + & - & + & + \\ 0 & + & 0 & 0 \\ - & 0 & 0 & 0 \\ - & 0 & 0 & 0 \end{bmatrix}$

Four Neutrinos in G₂

**********	******	*****	****	han		~ 0		. + .	rinos for G2
									THOS FOR GZ
>>> for q i	.n make	_neutr	inos	():	rep	ort	2(q)	
1 755 (/0	1 2)	2) [0		٦		~	Ь		(adb)
1.755 ((0,									
1.755 ((0,	1, 3),	3) [-	0 -	-]	= -	a ·	+b		(a^b)
1.755 ((0,	1, 3),	3) [-	- 0	-]	= +	a	- b		(a^b)
1.755 ((0,	1, 3),	3) [-		0]	= +	a -	+b	+	(a^b)
1.755 ((0,	1, 3),	3) [+	+ +	0]	= -	a	- b		(a^b)
1.755 ((0,	1, 3),	3) [+	0+	+]	= +	a	- b	+	(a^b)
1.755 ((0,	1, 3),	3) [+	+ 0	+]	= -	a -	+ b	+	(a^b)
1.755 ((0,	1, 3),	3) [0	+ +	+]	= +	a -	+ b		(a^b)

Name	Form	Vector (G_2)	Signature	Bits
ν	a+b+ab	[0]	(0, 1, 3), 3	1.75
ν_{μ}	a-b-ab	[0-]		
ν_{τ}	-a+b-ab	[-0]		
$\Sigma =$	a+b-ab	[0 + + +]		
$\bar{\nu}$	-a-b-ab	[+++0]		
$\bar{\nu}_{\mu}$	-a+b+ab	[++0+]		
$\bar{\nu}_{\tau}$	a-b+ab	[+0++]		
$\Sigma =$	-a-b+ab	[0]		

Table 4.13: Eigenvector Summary from $E_k R_k = R_k$ for G_2

Primary Basis Set					Dual Basis Set							
k =	$E_k = R_k - 1$	$P_k = -R_k$	$R_k = 1 + E_k$	k =	$E_k = R_k - 1$	$P_k = -R_k$	$R_k = 1 + E_k$					
0	[<mark>0</mark>]	[<mark>-</mark> 000]	[<mark>+</mark> 000]	7	[<mark>0</mark> +++]	[<mark>-</mark> +++]	[<mark>+</mark>]					
1	[- <mark>0</mark>]	[0 <mark>-</mark> 0 0]	[0 <mark>+</mark> 0 0]	6	[+ <mark>0</mark> + +]	[+ <mark>-</mark> ++]	[- <mark>+</mark>]					
2	[<mark>0</mark> -]	[0 0 <mark>-</mark> 0]	[0 0 <mark>+</mark> 0]	5	[+ + <mark>0</mark> +]	[+ + <mark>-</mark> +]	[+]					
3	[<mark>0</mark>]	[0 0 0 <mark>-</mark>]	[0 0 0 <mark>+</mark>]	4	[+++0]	[+++ <mark>-</mark>]	[<mark>+]</mark>					
sum	$[0\ 0\ 0\ 0]$	[]	[++++]	sum	$[0\ 0\ 0\ 0]$	[]	[++++]					

Quaternions in G₃

```
C:\Family\doug\GALG\GALG_2020_09_15>python -i ga.py

>>> Qi=x^y

>>> Qi=y^z

>>> Qk=x^z

>>> (Qi+Qj+Qk)

+ (x^y) + (x^z) + (y^z)

>>> (Qi+Qj+Qk)**2

0

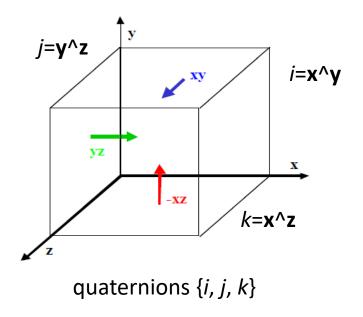
>>> (Qi*Qj*Qk)

-1

>>> Qi*Qj, Qk

(+ (x^z), + (x^z))

>>> Qj*Qk, Qi


(+ (x^y), + (x^y))

>>> Qk*Qi, Qj

(+ (y^z), + (y^z))

>>> Qk**2

-1
```


The quaternion sum is nilpotent! (Qi+Qj+Qk)**2 = 0

Bell Operator: concurrent spinors

Command Prompt - python -i qubits.py

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i qubits.py
>>> gastates(Sa)
INPUTS: a0 a1 | OUTPUT
ROW 00: - -
ROW 01: - + | -
ROW 02: + - | -
ROW 03: + + | +
Counts for outputs of ZERO=0, PLUS=2, MINUS=2 for TOTAL=4 rows
>>> gastates(Sa+Sb, zeros=False)
INPUTS: a0 a1 b0 b1 | OUTPUT
ROW 00: - - - - | -
ROW 03: - - + + | -
ROW 05: - + - + | +
ROW 06: - + + - | +
ROW 09: + - - + | +
ROW 10: + - + - | +
ROW 12: + + - - | -
ROW 15: + + + + | -
Counts for outputs of ZERO=8, PLUS=4, MINUS=4 for TOTAL=16 rows
>>>
```

Entanglement: Multiplicative Cancellation

Command Prompt - python -i qubits.py

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i qubits.py
>>> gastates(A*B, zeros=False)
INPUTS: a0 a1 b0 b1 | OUTPUT
ROW 05: - + - + + +
ROW 06: - + + - | -
ROW 09: + - - + | -
ROW 10: + - + - + +
Counts for outputs of ZERO=12, PLUS=2, MINUS=2 for TOTAL=16 rows
>>> gastates(A*B*(Sa+Sb), zeros=False)
INPUTS: a0 a1 b0 b1 | OUTPUT
ROW 01: - - - + | +
ROW 02: - - + - | -
ROW 04: - + - - | +
ROW 07: - + + + | -
ROW 08: + - - - | -
ROW 11: + - + + | +
ROW 13: + + - + | -
ROW 14: + + + - | +
Counts for outputs of ZERO=8, PLUS=4, MINUS=4 for TOTAL=16 rows
>>> ____
```

TauQuernions: Entangled Quaternions in \mathbb{G}_4

> TauQuernions $(\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k} \& \text{ conjugate set } \mathcal{T}_{i}', \mathcal{T}_{j}', \mathcal{T}_{k}')$:

Entangled Quaternion isomorphs

•
$$M = T_i = ab - cd$$
, $T_j = ac + bd$ and $T_k = ad - bc$

•
$$\mathcal{B} = \mathcal{T}_i' = ab + cd$$
, $\mathcal{T}_j' = ac - bd$ and $\mathcal{T}_k' = ad + bc$

• Anti-Commutative: $\mathcal{T}_{x} \mathcal{T}_{y} = -\mathcal{T}_{x} \mathcal{T}_{y}$

$$\mathbf{\mathcal{T}}_{i}^{2} = \mathbf{\mathcal{T}}_{i}^{2} = \mathbf{\mathcal{T}}_{k}^{2} = \mathbf{\mathcal{T}}_{i}^{2} \mathbf{\mathcal{T}}_{j}^{2} \mathbf{\mathcal{T}}_{k} = I^{-} = (1 + \mathbf{abcd}) \text{ (sparse -1)}$$

• $(I^{-})^{2} = I^{+} = (-1 \pm abcd)$ (sparse +1: is idempotent)

$$P_{k}^{x}$$

<pre>>>> report4(1-abcd)</pre>														
18.868 <<0, 8, 8>, 1>	[0 -	- 0	- 6	0 0		- 0	Ø	- 0	_	- 01	=	+	1	- (a^b^c^d)
$\rangle\rangle\rangle$ report4(-1-abcd)														
18.868 ((0, 8, 8), 1)	[+ 0	0+	Ø	+ +	Ø	4	+	0 +	Ø	0 +]	=	_	1	- (a^b^c^d)

$B^2 + M^2 = -1$	_
$\mathcal{B}^4 + \mathcal{M}^4 = +1$	

*	Γ _i	<i>T</i> _i	$oldsymbol{\mathcal{T}}_{k}$
$m{T}_{i}$	1 + abcd	–ad + bc	ac + bd
${m T}_{ m i}$	ad – bc	1 + abcd	–ab + cd
$m{T}_{k}$	–ac – bd	ab – cd	1 + abcd

*	$m{\mathcal{T}}_{i}$	σ	$oldsymbol{\mathcal{T}}_{k}$
${m T}_{ m i}$	"-1"	$-{\cal T}_k$	$oldsymbol{\mathcal{T}}_{i}$
Г _і	$m{T}_{k}$	"-1"	- T _i
$m{J}_k$	$-{\cal T}_{j}$	$m{\mathcal{T}}_{i}$	"-1"

$oldsymbol{\mathcal{T}}_{\mathrm{i}}$	I III	$oldsymbol{\mathcal{T}}_{k}$
Magic	$M_3 = -M_1$	$M_0 = -M_2$
Magic	$M_3 = -M_1$	$M_2 = -M_0$
Magic	$M_1 = -M_3$	$M_0 = -M_2$
Magic	$M_1 = -M_3$	$M_2 = -M_0$
	•	

${\cal T}_{ m i}^{\prime}$	T '	${oldsymbol{\mathcal{T}}}_{k}$ '
Bell	$\mathbb{B}_2 = -\mathbb{B}_0$	$\mathbb{B}_1 = -\mathbb{B}_3$
Bell	$\mathbb{B}_2 = -\mathbb{B}_0$	$\mathbb{B}_3 = -\mathbb{B}_1$
Bell	$\mathbb{B}_0 = -\mathbb{B}_2$	$\mathbb{B}_1 = -\mathbb{B}_3$
Bell	$\mathbb{B}_0 = -\mathbb{B}_2$	$\mathbb{B}_3 = -\mathbb{B}_1$

${\it B}$ and ${\it M}$		
operators are		
used as states		

Tauquernions

```
C:\Family\doug\GALG\GALG 2020 09 15>python -i tau code.py
Tx= + (a^b) - (c^d) [0 - - 0 + 0 0 + + 0 0 + 0 - - 0]
Ty= + (a^c) + (b^d) [- 0 0 + 0 - + 0 0 + - 0 + 0 0 -]
Tz= + (a^d) - (b^c) [0 + - 0 - 0 0 + + 0 0 - 0 - + 0]
******
Tx**2 = Sparse -1 = + 1 + (a^b^c^d) [-00-0--00--0-0-0-]
Ty**2 = Sparse -1 = + 1 + (a^b^c^d) [-00-0--00--0-0-0-]
Tz**2 = Sparse -1 = +1+ (a^b^c^d) [-00-0--00--0-0-0-]
-1 -abcd = Sparse +1 = - Magic**2 = Tx*Ty*Tz = -1 - (a^b^c^d) [+00+0++00++0+0+]
-1 +abcd = Sparse +1 = - Bell**2 - 1 + (a^b^c^d) [0 + + 0 + 0 0 + + 0 0 + 0 + + 0]
+1 +abcd = Sparse -1 = Magic**2 = + 1 + (a^b^c^d) [- 0 0 - 0 - - 0 0 - - 0 - 0 0 -]
+1 -abcd = Sparse -1 = Bell**2 = +1 - (a^b^c^d) [0 - - 0 - 0 0 - - 0 0 - 0 - 0]
          ***************
                          these are higgs
  (a^b) + (a^c) + (a^d) + (b^c) - (b^d) + (c^d) where H^{H=} 0
  (a^b) + (a^c) + (a^d) - (b^c) + (b^d) - (c^d) where H^{H=} 0
  (a^b) + (a^c) - (a^d) + (b^c) + (b^d) - (c^d) where H^{*H} = 0
  (a^b) + (a^c) - (a^d) - (b^c) - (b^d) + (c^d) where H^{H=} 0
  (a^b) - (a^c) + (a^d) + (b^c) + (b^d) + (c^d) where H*H= 0
  (a^b) - (a^c) + (a^d) - (b^c) - (b^d) - (c^d) where H*H= 0
  (a^b) - (a^c) - (a^d) + (b^c) - (b^d) - (c^d) where H*H= 0
  (a^b) - (a^c) - (a^d) - (b^c) + (b^d) + (c^d) where H*H= 0
  (a^b) + (a^c) + (a^d) + (b^c) - (b^d) - (c^d) where H*H= 0
  (a^b) + (a^c) + (a^d) - (b^c) + (b^d) + (c^d) where H*H= 0
  (a^b) + (a^c) - (a^d) + (b^c) + (b^d) + (c^d) where H*H= 0
  (a^b) + (a^c) - (a^d) - (b^c) - (b^d) - (c^d) where H*H= 0
  (a^b) - (a^c) + (a^d) + (b^c) + (b^d) - (c^d) where H*H= 0
  (a^b) - (a^c) + (a^d) - (b^c) - (b^d) + (c^d) where H*H= 0
  (a^b) - (a^c) - (a^d) + (b^c) - (b^d) + (c^d) where H*H= 0
  ′a^b) - (a^c) - (a^d) - (b^c) + (b^d) - (c^d) where H*H= 0
```

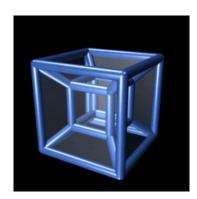
Sparse Invariants for Bell/Magic operators

Bell Sparse Invariants

C:\Family\doug\GALG\GALG_2020_09_15>python -i qubits.py >>> gastates((Sa+Sb)**2, zeros=False) INPUTS: a0 a1 b0 b1 OUTPUT
ROW 01: + - ROW 02: + - -
ROW 04: - + - ROW 07: - + + + -
ROW 08: + - ROW 11: + - + + -
ROW 13: + + - + - ROW 14: + + + - -
Counts for outputs of ZERO=8, PLUS=0, MINUS=8 for TOTAL=16 row >>> gastates((Sa+Sb)**4, zeros=False) INPUTS: a0 a1 b0 b1 OUTPUT
ROW 01: + + ROW 02: + - +
ROW 04: - + + ROW 07: - + + + +
ROW 08: + + ROW 11: + - + + +
ROW 13: + + - + + ROW 14: + + + - +
Counts for outputs of ZERO=8, PLUS=8, MINUS=0 for TOTAL=16 row

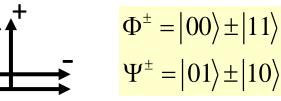
Magic Sparse Invariants

<pre>>>> gastates((Sa-Sb)**2, zeros=False)</pre>
INPUTS: a0 a1 b0 b1 OUTPUT
ROW 00: -
ROW 03: + + -
ROW 05: - + - + -
ROW 06: - + + - -
ROW 09: + + -
ROW 10: + - + - -
· · · · · · · · · · · · · · · · · · ·
ROW 12: + + -
ROW 15: + + + + -
Counts for outputs of ZERO=8, PLUS=0,
<pre>>>> gastates((Sa-Sb)**4, zeros=False)</pre>
<pre>>>> gastates((Sa-Sb)**4, zeros=False) </pre>
<pre>>>> gastates((Sa-Sb)**4, zeros=False) INPUTS: a0 a1 b0 b1 OUTPUT</pre>
INPUTS: a0 a1 b0 b1 OUTPUT
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + + ROW 05: - + - + + ROW 06: - + + - +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + + ROW 05: - + - + + ROW 06: - + + - + ROW 09: + + +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + + ROW 05: - + - + + ROW 06: - + + - +
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + +
<pre> INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + + ROW 05: - + - + + ROW 06: - + + - + ROW 06: - + + - + ROW 09: + + + ROW 10: + - + - + ROW 10: + - + - +</pre>
INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + +
<pre> INPUTS: a0 a1 b0 b1 OUTPUT ROW 00: + ROW 03: + + + ROW 05: - + - + + ROW 06: - + + - + ROW 06: - + + - + ROW 09: + + + ROW 10: + - + - + ROW 10: + - + - +</pre>


Ebits: Detailed Bell/Magic States

> Bell/Magic Operators (in \mathbb{G}_4):

- Bell operator *B* = S_A + S_B = a0^a1 + b0^b1
- Magic operator M = S_A S_B = a0^a1 b0^{b1}


▶ Bell/Magic operators $B = B^4$ and $M = M^4$ form ring states B_i and M_i :

$B_{(i+1)mod4} = B_i (S_A + S_B)$	$M_{(i+1)mod4} = M_i \left(S_A - S_B\right)$
$B_0 = A_0 B_0 Bell = -S_{00} + S_{11} = \Phi^+$	$M_0 = A_0 B_0 Magic = + S_{01} - S_{10}$
$B_1 = B_0 Bell = + S_{01} + S_{10} = \Psi^+$	$M_1 = M_0 Magic = -S_{00} - S_{11}$
$B_2 = B_1 Bell = + S_{00} - S_{11} = \Phi^-$	$M_{2} = M_{1} Magic = -S_{01} + S_{10}$
$B_3 = B_2 Bell = -S_{01} - S_{10} = \Psi^-$	$M_{3} = M_{2}$ Magic = + $S_{00} + S_{11}$
$B_0 = B_3 Bell = -S_{00} + S_{11} = \Phi^+$	$M_0 = M_3$ Magic = + $S_{01} - S_{10}$

4D tesseract

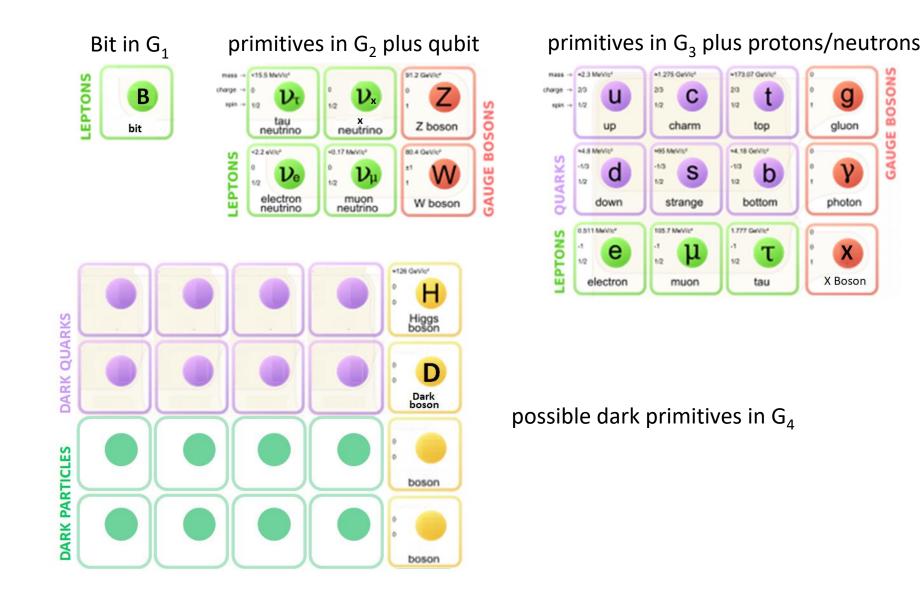
- Cannot factor: ± a0^b0 ± a1^b1 (Inseparable and is singular)
- > Bell and Magic operators are irreversible in \mathbb{G}_4 (different than Hilbert spaces)
 - See proofs that 1/(S_A ± S_B) does not exist for Bell (or Magic) operators
- Multiplicative Cancellation Information erasure is irreversible
 - Qubits $A_0 B_0 = + a0^{b0} a0^{b1} a1^{b0} + a1^{b1} = B_3 + M_3$
 - $0 = Bell * Magic = Bell * M_j = Magic * B_i = B_i * M_j$
- > Also works for higher dimensions $\mathcal{B} = \mathbf{S}_{A} \pm \mathbf{S}_{B} \pm \mathbf{S}_{C} \pm \dots$ (roots of unity)

Graded Standard Model with GALG

GAUGE BOSON

g

gluon


Y

photon

X

X Boson

0

Question and Answers